

Introduction au Quantique et workshop sur Atos Quantum Learning Machine au CINES

26-28 juin 2019 Montpellier (France)

Introduction aux capteurs quantiques

Vincent JACQUES

The first quantum revolution (1900 – 1940)

Deep modifications of ideas and concepts in Physics

The « fathers » of quantum physics at the Solvay congress 1927

F. SCHRÖDINGER E. VERSCHAFFELT W, PAULI W, HEISENBERG R.H. FOWLER L. BRILLOUIN A. PICCARD E. HENRIOT P. EHRENFEST Ed. HERZEN Th. DE DONDER P. DEBYE M. KNUDSEN W.L. BRAGG H.A. KRAMERS PAM DIRAC I. LANGMUIR P. LANGEVIN Ch.E. GUYE C.T.R. WILSON OW. RICHARDSON M. PLANCK Mme CURIE. H.A. LORENTZ A. EINSTEIN Absents : Sir W.H, BRAGG, H. DESLANDRES et E. VAN AUBEL

The first quantum revolution (1900 – 1940)

Deep modifications of ideas and concepts in Physics

Led to <u>unexpected</u> groundbreaking technologies

Bell lab, 1947

A second quantum revolution (1980 – ??)

Observation and manipulation of **individual** quantum systems (atoms, ions, photons, superconducting circuits...)

Chain of individual ions (R. Blatt, Innsbruck)

A second quantum revolution (1980 – ??)

Observation and manipulation of **individual** quantum systems (atoms, ions, photons, superconducting circuits...)

D. Wineland

Nobel Prize 2012

S. Haroche

New fundamental studies

- Quantum superposition
- entanglement
- decoherence
- Wave-particle duality

New applications ?????

- Quantum information
- Sensing
- Quantum simulator
- Bioapplications
- ...????...????...???

A large number of promising quantum systems

Defects in semiconductors

A large number of promising quantum systems

Defects in semiconductors

Magnetic field sensing with a single spin

Magnetic field sensing with a single spin

Magnetic field imaging with a single spin

Seminal proposal: Chernobrod and Berman "Spin microscope based on optically detected magnetic resonance" J. Appl. Phys. **97** 014903 (2005).

> Can be realized with **NV defects in diamond** Maze, *Nature* (2008), Balasubramanian, *Nature* (2008)

Diamond for quantum technologies

A *"perfect"* diamond would not absorb visible light...

... but more than 500 defects are optically active

Color centers

The « Hope » diamond (Washington)

The « Hortensia » diamond (Louvre, Paris)

Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom *"nestled"* in the diamond lattice

Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom "nestled" in the diamond lattice

Nitrogen-Vacancy (NV) defect in diamond

> An artificial atom "nestled" in the diamond lattice

Detection at the single emitter level at room T – perfect photostability

Gruber et al., Science 276, 2012 (1997)

Engineering NV defect in diamond

1997

High purity diamond using CVD growth

A. Tallaire and J. Achard (Villetaneuse)

NV defect engineering through nanoscale ion implantation

Meijer group (Leipzig)

2012

Engineering NV defect in diamond

1997

High purity diamond using CVD growth

A. Tallaire and J. Achard (Villetaneuse)

Lesik et al., PSSA 210, 2055 (2013)

Focused Ion Beam (FIB) for nanoscale implantation of NV defects

Spin properties

> Artificial atom with a spin triplet (S=1) ground state

fluorescence

Coherence time $T_2 \sim ms @ room T$

Spin properties

> Artificial atom with a spin triplet (S=1) ground state

Various experimental configurations

Magnetic sensing with an ensemble of NV defect

See recent review – arXiv:1903.08176

sensitivity down to few nT.Hz^{-1/2}

Sturnër, DRM (2019)

Various experimental configurations

Magnetic sensing with an ensemble of NV defects

> Magnetic **imaging** with an ensemble of NV defect

requires NV-doped layers close to the surface

Scanning-NV magnetometry

Related works

Harvard, Basel, Stuttgart, Ulm, ETHZ, UCSB...

- ★ Quantitative and vectorial
 (sensitivity 1 μT/Hz^{-1/2})
- ★ No magnetic back-action
- ★ Operation from 4K to 300K
- ★ Spatial resolution limited by the probe-to-sample distance *d*

Scanning-NV magnetometry

- ★ Quantitative and vectorial
 (sensitivity 1 μT/Hz^{-1/2})
- ★ No magnetic back-action
- ★ Operation from 4K to 300K
- ★ Spatial resolution limited by the probe-to-sample distance *d*

Related works Harvard, Basel, Stuttgart, Ulm, ETHZ, UCSB...

First experiments with nanodiamonds

Rondin, APL (2012), Nat Com. (2013)

All-diamond scanning probe tips

Commercially available since 2018

Physics of spin textures in ultrathin ferromagnets

Applications for a new generation of spintronic devices

e. g. : the domain wall (DW) "racetrack memory"

Physics of spin textures in ultrathin ferromagnets

Tetienne, Science (2014)

From DW to skyrmions

Emerging field of antiferromagnetic spintronics

□ Higher switching frequency (THz vs GHz for ferromagnets)

□ Almost no magnetic field generated,

- Highly stable devices
- No cross-talk between neighboring cells (high density device)

Imaging spin textures in antiferromagnets (AFs)

Second Harmonic Generation (SHG) microscopy

Fiebig et al., JOSA B 22, 96-118 (2005) - review paper

AF domains in highly strained BFO

Imaging spin textures in antiferromagnets (AFs)

Spin-polarized STM

Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009)

Atomic scale resolution!!!!!

...but limited to <u>conductive samples</u> and requires UHV conditions.

Mn monolayer on W(110)

Heinze, Science 288, 1805 (2000)

2.2 nm

Cycloidal AF order Bode, *Nature* **447**, 190 (2007)

Antiferromagnetic order in multiferroics

BiFeO₃: ferroelectricity....

G. Catalan and J.F. Scott *Adv. Mater.* **21**, 2463 (2009)

Antiferromagnetic order in multiferroics

BiFeO₃: ferroelectricity....

71° Domain wall

G. Catalan and J.F. Scott *Adv. Mater.* **21**, 2463 (2009)

Antiferromagnetic order in multiferroics

BiFeO₃: ferroelectricity....

G. Catalan and J.F. Scott *Adv. Mater.* **21**, 2463 (2009)

...+ antiferromagnetism @ 300 K P || [111]

Propagation direction k is perpendicular to the ferroelectric polarization vector P

Imaging antiferromagnetic order in BFO

30 nm thick (001)-BiFeO3

First real-space observation of the cycloidal antiferromagnetic order in BFO

Imaging antiferromagnetic order in BFO

30 nm thick (001)-BiFeO3

First real-space observation of the cycloidal antiferromagnetic order in BFO

PFM images

Gross, Nature 549, 252 (2017)

 \mathbf{P}_1^+

 $\mathbf{k}_1 \bullet$

Gross, Nature 549, 252 (2017)

 \mathbf{P}_1^+

X1 •

Gross, Nature 549, 252 (2017)

Matter waves in a « Mach-Zehnder » interferometer

Matter waves in a « Mach-Zehnder » interferometer

Philippe Bouyer, LP2N, Bordeaux

Matter waves in a « Mach-Zehnder » interferometer

Philippe Bouyer, LP2N, Bordeaux

Highly sensitive gravimeters and gyroscopes

01/05/15 06/05/15 11/05/15 Date

-100

-150

-200

Thank you for your attention